If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32w^2-64=0
a = 32; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·32·(-64)
Δ = 8192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8192}=\sqrt{4096*2}=\sqrt{4096}*\sqrt{2}=64\sqrt{2}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-64\sqrt{2}}{2*32}=\frac{0-64\sqrt{2}}{64} =-\frac{64\sqrt{2}}{64} =-\sqrt{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+64\sqrt{2}}{2*32}=\frac{0+64\sqrt{2}}{64} =\frac{64\sqrt{2}}{64} =\sqrt{2} $
| -6x+9x=-3 | | 5n+4=32 | | 5*11*n=55 | | −5p^3−5p^2+60p=0 | | 3/7*t=6 | | -2(2x-2)+2(2x+2)=5x+18 | | 5=z/12 | | 7(x+(-4))=14 | | -13=-5+2z | | 2-3(5b+2)=-94 | | m+3m+1=41 | | 5+x/14=2 | | 38-4r=-7(8r-2) | | 4(1-5b)+8b=-2-9b | | 4–2d=2 | | 125.31+.97m=150 | | 100m^2-36=0 | | (x+8)+2x+x=360 | | -15+4n=8n+8-7 | | -5.2+1/5k=4.9 | | (9y+8)(y+7)(8y-5)=0 | | 4/7z=-16 | | 5+x/14=12 | | 32=-8(1-b)-5(-8+8b) | | Y=(9x+1)(x-1) | | 4.05x+14.50=4.50(x+3) | | 1/7(x-21)+1/4(x+4)=x-9 | | x7-64x=0 | | 4(1-5x)+2x=112 | | 2h/5-2=419/20 | | 16x^2-6x-17=0 | | 7=w9.3 |